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Extension of Covariant POV-Measures in von 
Neumann Algebras 

T h o m a s  B r e u e r  I 

Received October 25, 1994 

We discuss the extension of POV-measures transforming covariantly with respect 
to automorphic group representations on von Neumann algebras. 

1. I N T R O D U C T I O N  

Systems of imprimitivity in the sense of Mackey (1949) consist of a 
projection-valued measure E on some G-space X and a unitary representation 
U of G fulfilling the covariance condition 

U~E(A)U* = E(gA), A ~ ~(X), g E G 

More generally, one introduces systems of covariance by replacing the 
projection-valued (PV) measure with a positive-operator-valued (POV) mea- 
sure. An imprimitivity theorem for systems of covariance can also be shown 
(Neumann, 1972; Scutaru, 1977; Cattaneo, 1979; Castrigiano and Henrichs, 
1980; Holevo, 1982; All, 1984): one extends, in the spirit of  Naimark (1943), 
the POV-measure to a PV-measure on a larger Hilbert space, and then con- 
structs a group representation on the enlarged Hilbert space in order to arrive 
at a system of imprimitivity. The original system of covariance can then be 
regarded as resulting from a projection of the system of imprimitivity to the 
original smaller Hilbert space. In particular, if we have a system of covariance 
on a transitive G-space, then the original group representation is a subrepre- 
sentation of an induced representation. 

In Breuer (1994a) systems of covariance were introduced in a more 
general context. The positive operators in the range of the POV-measure are 
not taken from ~ ( ~ ) ,  but from an arbitrary yon Neumann algebra. Further- 
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more, one replaces the unitary ray representation with an automorphic group 
representation on the yon Neumann algebra. In Section 2 we discuss the 
relevance of this generalization. In Section 3 we present an extension and 
an imprimitivity theorem for these more general systems of covariance. 

2. G E N E R A L I Z E D  SYSTEMS OF COVARIANCE 

Definition 1. A W*-system (~/t, G, a)  consists of a W*-algebra ~t with 
separable predual, a locally compact, separable group G, and a representation 
ot:G ~ Aut(d~) of G as a group of automorphisms of ~ such that: 

(i) O~glg 2 = O~glO~g 2. 

(ii) For all operators x �9 ~ the function g ~ ~g(X) is or-weakly 
continuous. 

The action e~ on ~ is said to be ergodic if Ol.g(X) = X for all g �9 G implies 
that x is a multiple of the identity operator. 

The assumption that M. has separable predual is equivalent (Pedersen, 
1979, 3.9.9) to the fact that At is isomorphic to a v o n  Neumann algebra on 
a separable Hilbert space. Although for some of the mathematical results this 
assumption is not necessary, it is usually made in physical applications. 
Similarly, the assumption that G is separable is not necessary for most of 
the results (Blattner, 1961, 1962). It can be dropped if one is willing to enter 
into more intricate mathematical arguments. 

Example 1. The systems of traditional quantum mechanics can be 
regarded as W*-systems in the following way. A quantum mechanical system 
is specified by a unitary ray representation U of a kinematical group G, which 
is, for example, the Poincar6 group or the Galilei group. Associated to U is 
a representation ~x of G as a group of automorphisms of ~ ( ~ )  defined by 

Otg(X) := UgxU*, g �9 G, x �9 ~ ( ~ )  

Then ( ~ ( ~ ) ,  G, cx) is a W*-system. The choice of ~ ( ~ )  for M~ is a conse- 
quence of von Neumann's irreducibility postulate. 

Conversely, every W*-system, where ~ is a type I factor, can be brought 
into the form ( ~ ( ~ ) ,  G, U.  U*). This is due to the fact that all automorphisms 
c~ of a type I factor are inner: they are induced by a unitary operator U �9 
~/[ by ec(x) = UxU*. 

Example 2. Let X be a G-space and p~ a quasi-invariant measure on X. 
Denote by L~176 IX) the von Neumann algebra of ~-essentially bounded 
functions on X. G acts on L~(X, IX) from the left by 
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AdX(g)f(x) := f(g ix), f E L~(X, IX) 

(L~(X, Ix), G, AdX) is a commutative W*-system. 

As these examples show, W*-systems generalize quantum mechanical 
and classical systems. They can also describe quantum systems with superse- 
lection rules. 

Generalized Systems of Covariance. Using W*-systems, one arrives at 
a generalized notion of systems of covariance, which will be used in the sequel. 

Definition 2. Let (~ ,  G, o~) be a W*-system and let X be a standard 
Borel G-space. A quasi-invariant POV-measure a on X with values in M,, 
together with the automorphic representation ~ of G on 7[/[, is called a system 
of covariance (a, oL) based on X if a acts covariantly with respect to cx, 

ot~(a(A)) = a(gA), 3, ~ ~(X), g E G 

If G acts transitively on X, then (a, oL) is called a transitive generalized system 
of covariance. 

Traditionally systems of covariance are defined to consist of a unitary 
ray representation of G and a covariant POV-measure on X, Why is Definition 
2 more general? The main reason is that an automorphic representation of 
G on A/[ cannot always be replaced by a unitary ray representation of G on 
~ .  I will briefly make some remarks on which automorphic group representa- 
tions can be replaced with a unitary ray representation and which cannot. 

Unitary Implementability of Automorphic Group Representations. An 
automorphic group representation ~ cannot be replaced with a unitary ray 
representation if there is s o m e  O~g which is not spatial. [An automorphism 
of a yon Neumann algebra ~ C ~ ( ~ )  is called spatial if there is a unitary 
operator U on ~ ,  U not necessarily in ~ ,  such that ~ = U �9 U*.] Let me 
quote some partial results on when automorphisms are spatial. If ~ is a 
factor of type I or III, any automorphism is spatial. But if M~ is a factor of 
type I L  with commutant of type IIl, then there are examples of automorphisms 
which are not spatial, even if ~ is separable (Kadison and Ringrose, 1986, 
13.4.3). It is possible to give a necessary and sufficient condition (Kadison 
and Ringrose, 1986, 9.6.33) when an automorphism of a type II~ factor with 
commutant of type IIj is spatial. If ~ is not a factor, then one can guarantee 
that an automorphism is spatial if the central decomposition of M, does not 
contain any factor of type II and if the automorphism leaves every central 
element fixed. This last condition is a severe restriction in physical applica- 
tions. It can be dropped if, for example, the commutant of ~ is Abelian 
(Dixmier, 1959, III.3.2, Corollary to Proposition 2), or if the commutant is 
of the form C | F, where C is an Abelian von Neumann algebra and F is 



1250 Breuer 

a factor (Dixmier, 1959, III.3.2, Proposition 2) or if ~ is of type III and 
operates on a separable Hilbert space (Dixmier, 1959, III.8.6, Corollary 8). 

Even if all ~x are spatial it is in general not possible to replace ~ by 
a unitary ray representation. Assume that each automorphism % can be 
implemented by a unitary operator U~. By gluing together the U~ one obtains 
a unitary representation U(G) with multiplier in ~ '  (Streater, 1990). (Only 
if JR is irreducible is this necessarily a unitary ray representation. If ~ is of 
type I, then the multipliers can be chosen to be in the center of JR.) 

3. A N  E X T E N S I O N  A N D  A N  I M P R I M I T I V I T Y  T H E O R E M  

Historical Remarks. Mackey's (1949, 1952) imprimitivity theorem says 
that a system of imprimitivity on a homogeneous space G/H is unitarily 
equivalent to a system of imprimitivity induced from a representation of H. 
Furthermore, there is a one-to-one correspondence of the equivalence classes 
of systems of imprimitivity based on G/H and the equivalence classes of 
unitary representations of the little group H. Blattner (1961, 1962) generalized 
the imprimitivity theorem to locally compact groups which are not necessarily 
separable. Takesaki (1968, 1973), Rieffel (1974), and Green (1980) gave 
generalizations of Mackey's theorem to C*- and W*-systems. They con- 
structed W*-systems which are induced from W*-systems of a subgroup H 
and gave sufficient conditions for W*-systems to be isomorphic to induced 
W*-systems. 

Naimark's (1943) extension theorem says that for any POV-measure a 
on a Borel space X in a Hilbert space ~ there is a unique minimal Hilbert 
space ~ '  containing ~ = P ~ '  as a subspace and a PV-measure E on X in 
~ '  such that a(A) = PE(A)P. Stinespring (1955) proved an extension theorem 
for completely positive maps between C*-algebras. Amann (1986, Theorem 
IV.2) extended Naimark's theorem to POV-measures on groups with values 
in von Neumann algebras and showed that covariance of the POV-measure 
implies covariance of the resulting PV-measure. In this context covariance 
properties are formulated not with respect to a unitary ray representation, but 
with respect to a representation of the group as automorphism group of 
the von Neumann algebra. The extension theorem to follow will generalize 
Amann's construction from POV-measures on groups to POV-measures on 
homogeneous spaces. 

In Neumann (1972), Scutaru (1977), Cattaneo (1979), Castrigiano and 
Henrichs (1980), and Ali (1984) the results of Mackey and Naimark were 
combined to arrive at various versions of the following imprimitivity and 
extension theorems. Let a be a POV-measure on some G-space X in a Hilbert 
space ~ which transforms covariantly with respect to a unitary representation 
U of G. Then there is a bigger Hilbert subspace ~ '  containing ~ = P ~ '  
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and a system of imprimitivity (E, U) in 7~' such that U is a subrepresentation 
of 0 and a(A) = PE(A)P for all Borel sets A of X. Furthermore, for any 
unitary ray representation U of G the following conditions are equivalent: 
(a) There exists a POV-measure a on G/H such that (a, U) is a system of 
covariance based on G/H. (b) U is unitarily equivalent to a subrepresentation 
of a representation of G induced from some unitary representation of H. 

The Theorems. Now we will give an extension and an imprimitivity 
theorem for generalized systems of covariance. Theorem 1 generalizes 
Amann's (1986, Theorem IV.2) extension theorem, since it applies to covariant 
POV-measures on arbitrarily Borel G-spaces X, and not just to those on G. 
This generalization, however, is straightforward, because Amann's proof can 
be easily adapted. 

Theorem 1. Let (N, G, c0 be a W*-system, and (a, ct) a generalized 
system of covariance based on X. Then there are: 

�9 A W*-system (N, G, [3). 
�9 A PV-measure E on X with values in N fulfilling the covariance 

condition 

[3g(E(A)) = E(gA), A ~ ~(X), g ~ G 

�9 A projector P in the fixed-point algebra N~ := {x ~ N: [3~(x) = x 
for all g E G}. 

~ An isomorphism i:~t --> PNP of the W*-algebras N and PNP 
fulfilling 

i(a(A)) = PE(A)P, A e E(X) 

The projector P is an atom of N ~ if a acts ergodically on ./IL. 

The proof of this theorem can be found in Breuer (1994b, Section 2.5.1, 
Theorem 3). 

Finally we will present an imprimitivity theorem for transitive general- 
ized systems of covariance. This generalizes imprimitivity theorems for tradi- 
tional systems of covariance in Neumann (t972), Scutaru (1977), Cattaneo 
(1979), Castrigiano and Henrichs (1980), and Ali (1984), because it applies 
to automorphic group representations and not only to projective unitary ones. 

In order to formulate the theorem we first have to construct induced 
W*-systems. In doing this I will follow Takesaki (1973). Let (No, H, 3,) be 
a W*-system of a closed subgroup H of G, where No is assumed to be 
isomorphic to a weakly closed subalgebra of bounded operators on a separable 
Hilbert space ~0. We consider the tensor product L=(G) | No of No and the 
Abelian yon Neumann algebra L=(G). The elements of  L~(G) | No are 
regarded as bounded N0-valued functions x on G with the following properties. 
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1. For each pair ~, "q s ~0, the function g ~ <~, x(g)~l) is Haar- 
measurable. 

2. dg-ess supg~cllx(g)[I < m. 

On L=(G) | No define actions ~/' of H and [3 of G by 

(',/~(x))(s) := "yh(x(sh)), s ~ G, h ~ H, x ~ L~(G) | No 
([3g(X))(s) := x(g-ls), g, s e G, x ~ L=(G) | No 

Let N denote the fixed-point algebra of L~(G) | Y0 under {~/f,: h ~ H}. 
Since 3'~ and [3g commute for all h ~ H, g E G, N is invariant under [3g. 
The restriction of [3~ to N is also denoted by [3g. We say that the W*-system 
(N, G, [3) is induced from the W*-system (No, H, "t) and write 
(24, G, [3) = Ind~(N0, H, ",/). 

Theorem 2. Let G be a locally compact separable group, and let H be 
a closed subgroup of G. Let a be a POV-measure based on G/H, and denote 
by ~ the yon Neumann algebra {a(A): A ~ E(G/H)}". Let ~ be a pointwise 
(r-weakly continuous representation of G as automorphism group of Jls 
Assume that a is covariant with respect to c~, 

~g(a(A)) = a(gA), g ~ G, A ~ Y~(G/H) 

Then there are: 

�9 A W*-system (N, G, [3) with an Abelian yon Neumann algebra N. 
�9 A PV-measure E o n  G/Hgenerating N = {E(A): A e E(G/H)}" and 

fulfilling the covariance condition 

[3g(E(A)) = E(gA), A ~ E(G/H), g e G 

�9 A projector P in the fixed-point algebra N ~. 
�9 An isomorphism i: A[ --> PNP of the W*-algebras ~ and PNP 

such that 

i(a(A)) = PE(A)P, A ~ E(G/H) 

Furthermore, there is a W*-system (No, H, ",/) such that (N, G, [3) is 
isomorphic to Ind,(N0, H, "y). 

For a proof of this theorem see Breuer ( 1994b, Section 2.5.2, Theorem 4). 
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